753x^2+199=242

Simple and best practice solution for 753x^2+199=242 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 753x^2+199=242 equation:



753x^2+199=242
We move all terms to the left:
753x^2+199-(242)=0
We add all the numbers together, and all the variables
753x^2-43=0
a = 753; b = 0; c = -43;
Δ = b2-4ac
Δ = 02-4·753·(-43)
Δ = 129516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{129516}=\sqrt{4*32379}=\sqrt{4}*\sqrt{32379}=2\sqrt{32379}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{32379}}{2*753}=\frac{0-2\sqrt{32379}}{1506} =-\frac{2\sqrt{32379}}{1506} =-\frac{\sqrt{32379}}{753} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{32379}}{2*753}=\frac{0+2\sqrt{32379}}{1506} =\frac{2\sqrt{32379}}{1506} =\frac{\sqrt{32379}}{753} $

See similar equations:

| -885x^2-347=-295 | | 56y^2-168=0 | | 17x+135=526 | | 10y^2+60y+80=0 | | 4^(3x+2)=5 | | 98x=2x | | 8=8000000000000000000000000o | | m+4+9*7m=87m | | (x+6)÷x=x | | x+x1+2+78=254 | | 6^4x-2=7^9x-3 | | 5(3x-1)=15x | | X/x-5=3/4 | | 4x×-3=11 | | 5o+4o+55o/o*9o=o+o+o+o+o+5o | | P=73p-25 | | 5p+996p=55p | | 1+1x=44 | | 9x+x+5=2x+88*x+1 | | 2x^2-28x+73=0 | | 8/2x-6=10x/2x=6x+9 | | 2x+11=3(x-11) | | 15x+6=8x-2 | | 3(x-13)-(x-3)=5 | | 3(x-13)(x-3)=5 | | 6n-6n=15+24 | | -17x=55 | | 5(x+5)=3(x+4) | | 7x-5(2x-4)=x-4 | | 4x+6=4. | | Y=0.1+x^2 | | 3z-14=12. |

Equations solver categories